Simulating laboratory experiments of dense water cascades: a sensitivity study

Fred Wobus
G.I. Shapiro, M.A.M. Maqueda, J.M. Huthnance

Challenger Conference for Marine Science
7th September 2010
Ocean conveyor belt

Deep water formation sites

Arctic Ocean

Storfjorden, Svalbard

1 - 10: known cascading sites

Ivanov & Shapiro (ACSYS, 2003)
Dense water cascades

Surface forcing

Graphics from www.pol.ac.uk
Dense water cascades

Graphics from www.pol.ac.uk
Dense water cascades

Mixing & entrainment

Graphics from www.pol.ac.uk
Dense water cascades
The problem

• Difficult to observe
 ▪ Relatively small-scale, easily missed
 ▪ Highly intermittent in space & time

• Difficult to model
 ▪ Not resolved in global climate models
 ▪ Turbulence, mixing and entrainment
 ▪ Bottom friction

• What are the important processes?
Laboratory experiments

Experiment parameters

• Variables
 ▪ Rotation rate \(f \)
 ▪ Inflow rate \(Q \)
 ▪ Reduced gravity
 \[g' = g\left(\frac{\Delta \rho}{\rho_0}\right) \]

• Fixed parameters
 • Slope angle \(\theta \)
 • Kinematic viscosity \(\nu \)
3D numerical model

• POLCOMS
 ▪ Hydrostatic model
 ▪ Baroclinic B-grid
 • 120x120 nodes
 • dx=5mm
 ▪ σ-coordinate system
 • 33 – 45 layers
 • dz=0.1mm – 10mm
Model set-up

- Bottom boundary condition
- Horizontal/vertical resolution
 - Resolve bottom boundary layer
- Time step
 - CFL-condition
- Coriolis scheme
- ‘Injection’ of dense water
 - Into σ-layers spanning $3\times$Ekman depth
Qualitative comparison (video)

Laboratory

Model
Qualitative comparison (video)

Laboratory

Model
Comparison Lab vs. Model

Non-dimensional coordinates

\[L_0 = \frac{Q}{2\pi H_E V_g G_m \cos \theta} \]

\[T_0 = \frac{\sqrt{2L_0}}{V_g} \]

\[V_g = \frac{g'}{f} \tan \theta \]

\[H_E = \sqrt{\nu / f \cos \theta} \]

\[G_m \approx 1.12 \]

Model physics #1 - Diffusivity

• Increasing vertical **diffusivity**
 ▪ Increases diapycnal mixing (lower density contrast)

• More diffuse plume → descent speed should eventually slow down (in dimensional co-ordinates)
 ▪ physical assumptions of simplified model are for 2-layer system, not for stratified environment of a diffuse plume
Vertical Diffusivity

Values in $m^2 \cdot s^{-1}$

1pm ($f=1.6$, $Q=2.0$, $g'=2.4$)

1.3×10^{-9}

Non-dimensional plume distance L_f/L_0
Non-dimensional time t/T_0

Lab Model (diff=1.3E-9)
Vertical Diffusivity

Values in $m^2 s^{-1}$
Vertical Diffusivity

1pm (f=1.6, Q=2.0, g'=2.4)

Lab Model (diff=1.3E-9)
Model (diff=1.0E-8) Model (diff=1.0E-7)

Values in \(\text{m}^2 \text{ s}^{-1} \)
Vertical Diffusivity

1pm (f=1.6, Q=2.0, g'=2.4)

Values in m² s⁻¹
Vertical Diffusivity

Values in $\text{m}^2 \text{s}^{-1}$
Model physics #2 - Viscosity

- Increasing vertical **viscosity**
 - Increases the thickness of bottom Ekman layer
 - Non-dimensionalisation includes viscosity
 - Thicker plume → descent speed should follow the same curve in non-dimensional space until underlying physical assumptions of simplified model are broken
Vertical viscosity

1pm (f=1.6, Q=2.0, g'=2.4)
Vertical viscosity

1pm (f=1.6, Q=2.0, g’=2.4)

- Lab Model (visc=1.0E-6)
- Model (visc=3.0E-6)

3.0×10^{-6}
Vertical viscosity

1pm (f=1.6, Q=2.0, g'=2.4)

Lab Model (visc=1.0E-6)
Model (visc=3.0E-6)
Model (visc=6.0E-6)
Vertical viscosity

1.0×10^{-5}

1pm (f=1.6, Q=2.0, g'=2.4)
Vertical viscosity

1pm \((f=1.6, \ Q=2.0, \ g'=2.4) \)

![Graph showing non-dimensional plume distance \(L_L/L_0 \) vs. non-dimensional time \(t/T_0 \).](image)

- Lab
- Model (visc=1.0E-6)
- Model (visc=3.0E-6)
- Model (visc=6.0E-6)
- Model (visc=10.0E-6)
- Model (visc=30.0E-6)

![Image showing temperature distribution.](image)
Vertical viscosity

1.0×10^{-4}
Conclusions

• Hydrostatic model agrees well with laboratory
 ▪ Good qualitative agreement
 ▪ Validation by non-dimensional parameters
• Physics in the model behaves as expected
• Ekman dynamics
 ▪ Very important to resolve bottom bound. layer
 ▪ Thickness of Ekman layer affects propagation
Further research

• downslope transport capacity
 ▪ bottom and interfacial Ekman layers

• model cascading in the Arctic Ocean
 ▪ Example: Storfjorden cascade (Svalbard)

• *Influence on larger-scale ocean circulation?*
Thank You

fred.wobus@plymouth.ac.uk
References

Abstract

Simulating laboratory experiments of dense water cascades: a sensitivity study

The sinking of dense shelf waters down the continental slope – “cascading” – contributes to shelf-ocean exchange, ventilation of oceanic intermediate and abyssal layers and off-shelf carbon transport in the Arctic Ocean where dense waters form by brine ejection and surface cooling. Cascading over steep bottom topography is studied here in numerical experiments using POLCOMS. The model setup is based on laboratory experiments where a solid cone is placed in a rotating tank filled with water of constant density and a cascade is simulated by the injection of dense water at the tip of the cone. The down-slope propagation of the plume is expressed as the distance of the front from the cone tip, L_f, as a function of time which is studied for various physical and numerical parameters. The physical parameters governing the experimental setup are the reduced gravity g', the flow rate Q and the Coriolis parameter f. The evolution of L_f over time is compared to the results of the original laboratory experiments in model setups using the values of g', Q and f of the original experiments while the sensitivity to several numerical parameters is analysed. These include the time step Δt, the vertical resolution (i.e. number and spacing of σ-layers), different formulations of the bottom boundary condition and the Coriolis term, and the vertical diffusion of momentum (viscosity). Turbulent flows are not considered, horizontal diffusivity of salt and heat as well as the horizontal viscosity are set to molecular levels and the geometry of the cone and tank remain unchanged for all runs. The behaviour of the sinking plume is expressed in non-dimensional variables which successfully validated the model against the laboratory experiments. This makes the model a valuable tool for the study of dense water cascading in a larger-scale setup of the Arctic Ocean.